1-D plot of a numeric score by means/standard deviations computed using an external table of weights
s1d.distri.Rd
This function represents a set of distributions on a numeric score using a mean-standard deviation display
Arguments
- score
a numeric vector (or a data frame) used to produce the plot
- dfdistri
a data frame containing the mass distribution in which each column is a class
- yrank
a logical to draw the distributions sorted by means ascending order
- labels
the labels' names drawn for each distribution
- at
a numeric vector used as an index
- sdSize
a numeric for the size of the standard deviation segments
- facets
a factor splitting
score
so that subsets of the data are represented on different sub-graphics- plot
a logical indicating if the graphics is displayed
- storeData
a logical indicating if the data are stored in the returned object. If
FALSE
, only the names of the data arguments are stored- add
a logical. If
TRUE
, the graphic is superposed to the graphics already plotted in the current device- pos
an integer indicating the position of the environment where the data are stored, relative to the environment where the function is called. Useful only if
storeData
isFALSE
- ...
additional graphical parameters (see
adegpar
andtrellis.par.get
)
Details
Graphical parameters for rugs are available in plines
of adegpar
.
Some appropriated graphical parameters in p1d
are also available.
The weighted means and standard deviations of class are available in the object slot stats
using object@stats$means
and object@stats$sds
.
Value
An object of class ADEg
(subclass S1.distri
) or ADEgS
(if add
is TRUE
and/or
if facets or data frame for score
are used).
The result is displayed if plot
is TRUE
.
Author
Alice Julien-Laferriere, Aurelie Siberchicot aurelie.siberchicot@univ-lyon1.fr and Stephane Dray
Examples
w <- seq(-1, 1, le = 200)
distri <- data.frame(lapply(1:50,
function(x) sample(200:1) * ((w >= (- x / 50)) & (w <= x / 50))))
names(distri) <- paste("w", 1:50, sep = "")
g11 <- s1d.distri(w, distri, yrank = TRUE, sdS = 1.5, plot = FALSE)
g12 <- s1d.distri(w, distri, yrank = FALSE, sdS = 1.5, plot = FALSE)
G1 <- ADEgS(c(g11, g12), layout = c(1, 2))
data(rpjdl, package = "ade4")
coa1 <- ade4::dudi.coa(rpjdl$fau, scannf = FALSE)
G2 <- s1d.distri(coa1$li[,1], rpjdl$fau, labels = rpjdl$frlab,
plabels = list(cex = 0.8, boxes = list(draw = FALSE)))
if (FALSE) { # \dontrun{
g31 <- s1d.distri(coa1$l1[,1], rpjdl$fau, plabels = list(cex = 0.8, boxes = list(draw = FALSE)),
plot = FALSE)
nsc1 <- ade4::dudi.nsc(rpjdl$fau, scannf = FALSE)
g32 <- s1d.distri(nsc1$l1[,1], rpjdl$fau, plabels = list(cex = 0.8, boxes = list(draw = FALSE)),
plot = FALSE)
g33 <- s.label(coa1$l1, plot = FALSE)
g34 <- s.label(nsc1$l1, plot = FALSE)
G3 <- ADEgS(c(g31, g32, g33, g34), layout = c(2, 2))
} # }