Between- and within-class double principal coordinate analysis
bwca.dpcoa.Rd
These functions allow to study the variations in diversity among communities (as in dpcoa) taking into account a partition in classes
Usage
bwca.dpcoa(x, fac, cofac, scannf = TRUE, nf = 2, ...)
# S3 method for class 'dpcoa'
bca(x, fac, scannf = TRUE, nf = 2, ...)
# S3 method for class 'dpcoa'
wca(x, fac, scannf = TRUE, nf = 2, ...)
# S3 method for class 'betwit'
randtest(xtest, nrepet = 999, ...)
# S3 method for class 'betwit'
summary(object, ...)
# S3 method for class 'witdpcoa'
print(x, ...)
# S3 method for class 'betdpcoa'
print(x, ...)
Arguments
- x
an object of class
dpcoa
- fac
a factor partitioning the collections in classes
- scannf
a logical value indicating whether the eigenvalues barplot should be displayed
- nf
if scannf FALSE, a numeric value indicating the number of kept axes
- ...
further arguments passed to or from other methods
- cofac
a cofactor partitioning the collections in classes used as a covariable
- nrepet
the number of permutations
- xtest, object
an object of class
betwit
created by a call to the functionbwca.dpcoa
References
Dray, S., Pavoine, S. and Aguirre de Carcer, D. (2015) Considering external information to improve the phylogenetic comparison of microbial communities: a new approach based on constrained Double Principal Coordinates Analysis (cDPCoA). Molecular Ecology Resources, 15, 242–249. doi:10.1111/1755-0998.12300
Author
Stéphane Dray stephane.dray@univ-lyon1.fr
Examples
if (FALSE) { # \dontrun{
## First example of Dray et al (2015) paper
con <- url("https://pbil.univ-lyon1.fr/datasets/dray/MER2014/soilmicrob.rda")
load(con)
close(con)
## Partial CCA
coa <- dudi.coa(soilmicrob$OTU, scannf = FALSE)
wcoa <- wca(coa, soilmicrob$env$pH, scannf = FALSE)
wbcoa <- bca(wcoa,soilmicrob$env$VegType, scannf = FALSE)
## Classical DPCoA
dp <- dpcoa(soilmicrob$OTU, soilmicrob$dphy, RaoDecomp = FALSE, scannf = FALSE)
## Between DPCoA (focus on the effect of vegetation type)
bdp <- bca(dp, fac = soilmicrob$env$VegType , scannf = FALSE)
bdp$ratio ## 0.2148972
randtest(bdp) ## p = 0.001
## Within DPCoA (remove the effect of pH)
wdp <- wca(dp, fac = soilmicrob$env$pH, scannf = FALSE)
wdp$ratio ## 0.5684348
## Between Within-DPCoA (remove the effect of pH and focus on vegetation type)
wbdp <- bwca.dpcoa(dp, fac = soilmicrob$env$VegType, cofac = soilmicrob$env$pH, scannf = FALSE)
wbdp$ratio ## 0.05452813
randtest(wbdp) ## p = 0.001
} # }