Double principal coordinate analysis
dpcoa.Rd
Performs a double principal coordinate analysis
Arguments
- df
a data frame with samples as rows and categories (i.e. species) as columns and abundance or presence-absence as entries. Previous releases of ade4 (<=1.6-2) considered the transposed matrix as argument.
- dis
an object of class
dist
containing the distances between the categories.- scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
- RaoDecomp
a logical value indicating whether Rao diversity decomposition should be performed
- nf
if scannf is FALSE, an integer indicating the number of kept axes
- full
a logical value indicating whether all non null eigenvalues should be kept
- tol
a tolerance threshold for null eigenvalues (a value less than tol times the first one is considered as null)
- x, object
an object of class
dpcoa
- xax
the column number for the x-axis
- yax
the column number for the y-axis
- ...
...
further arguments passed to or from other methods
Value
Returns a list of class dpcoa
containing:
- call
call
- nf
a numeric value indicating the number of kept axes
- dw
a numeric vector containing the weights of the elements (was
w1
in previous releases of ade4)- lw
a numeric vector containing the weights of the samples (was
w2
in previous releases of ade4)- eig
a numeric vector with all the eigenvalues
- RaoDiv
a numeric vector containing diversities within samples
- RaoDis
an object of class
dist
containing the dissimilarities between samples- RaoDecodiv
a data frame with the decomposition of the diversity
- dls
a data frame with the coordinates of the elements (was
l1
in previous releases of ade4)- li
a data frame with the coordinates of the samples (was
l2
in previous releases of ade4)- c1
a data frame with the scores of the principal axes of the elements
References
Pavoine, S., Dufour, A.B. and Chessel, D. (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. Journal of Theoretical Biology, 228, 523–537.
Author
Daniel Chessel
Sandrine Pavoine pavoine@mnhn.fr
Stéphane Dray stephane.dray@univ-lyon1.fr
Examples
data(humDNAm)
dpcoahum <- dpcoa(data.frame(t(humDNAm$samples)), sqrt(humDNAm$distances), scan = FALSE, nf = 2)
dpcoahum
#> Double principal coordinate analysis
#> call: dpcoa(df = data.frame(t(humDNAm$samples)), dis = sqrt(humDNAm$distances),
#> scannf = FALSE, nf = 2)
#> class: dpcoa
#>
#> $nf (axis saved) : 2
#> $rank: 9
#>
#> eigen values: 0.1018 0.01035 0.006281 0.005602 0.003179 ...
#>
#> vector length mode content
#> 1 $dw 56 numeric category weights
#> 2 $lw 10 numeric collection weights
#> 3 $eig 9 numeric eigen values
#>
#> data.frame nrow ncol content
#> 1 $dls 56 2 coordinates of the categories
#> 2 $li 10 2 coordinates of the collections
#> 3 $c1 34 2 scores of the principal axes of the categories
if(adegraphicsLoaded()) {
g1 <- plot(dpcoahum)
} else {
plot(dpcoahum)
}
#> Error in s.corcircle(dfxy = dpcoahum$c1, xax = 1, yax = 2, plot = FALSE, storeData = TRUE, pos = -3, psub = list(text = "Principal axes", position = "topleft"), pbackground = list(box = FALSE), plabels = list(cex = 1.25)): non convenient selection for dfxy (can not be converted to dataframe)
if (FALSE) { # \dontrun{
data(ecomor)
dtaxo <- dist.taxo(ecomor$taxo)
dpcoaeco <- dpcoa(data.frame(t(ecomor$habitat)), dtaxo, scan = FALSE, nf = 2)
dpcoaeco
if(adegraphicsLoaded()) {
g1 <- plot(dpcoaeco)
} else {
plot(dpcoaeco)
}
} # }