Monte-Carlo Test on a Discriminant Analysis (in C).
randtest.discrimin.Rd
Test of the sum of a discriminant analysis eigenvalues (divided by the rank). Non parametric version of the Pillai's test. It authorizes any weighting.
Usage
# S3 method for class 'discrimin'
randtest(xtest, nrepet = 999, ...)
Author
Jean Thioulouse Jean.Thioulouse@univ-lyon1.fr
Examples
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 3)
rand1 <- randtest(discrimin(pca1, meaudret$design$season, scan = FALSE), 99)
rand1
#> Monte-Carlo test
#> Call: randtest.discrimin(xtest = discrimin(pca1, meaudret$design$season,
#> scan = FALSE), nrepet = 99)
#>
#> Observation: 0.3034897
#>
#> Based on 99 replicates
#> Simulated p-value: 0.01
#> Alternative hypothesis: greater
#>
#> Std.Obs Expectation Variance
#> 5.3633483394 0.1607854273 0.0007079494
#Monte-Carlo test
#Observation: 0.3035
#Call: as.randtest(sim = sim, obs = obs)
#Based on 999 replicates
#Simulated p-value: 0.001
plot(rand1, main = "Monte-Carlo test")
summary.manova(manova(as.matrix(meaudret$env)~meaudret$design$season), "Pillai")
#> Df Pillai approx F num Df den Df Pr(>F)
#> meaudret$design$season 3 2.7314 11.299 27 30 1.636e-09 ***
#> Residuals 16
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# Df Pillai approx F num Df den Df Pr(>F)
# meaudret$design$season 3 2.73 11.30 27 30 1.6e-09 ***
# Residuals 16
# ---
# Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
# 2.731/9 = 0.3034