Linear Discriminant Analysis (descriptive statistic)
discrimin.Rd
performs a linear discriminant analysis.
Arguments
- dudi
a duality diagram, object of class
dudi
- fac
a factor defining the classes of discriminant analysis
- scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
- nf
if scannf FALSE, an integer indicating the number of kept axes
Value
returns a list of class 'discrimin' containing :
- nf
a numeric value indicating the number of kept axes
- eig
a numeric vector with all the eigenvalues
- fa
a matrix with the loadings: the canonical weights
- li
a data frame which gives the canonical scores
- va
a matrix which gives the cosines between the variables and the canonical scores
- cp
a matrix which gives the cosines between the components and the canonical scores
- gc
a data frame which gives the class scores
Author
Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr
Examples
data(chazeb)
dis1 <- discrimin(dudi.pca(chazeb$tab, scan = FALSE), chazeb$cla,
scan = FALSE)
dis1
#> Discriminant analysis
#> call: discrimin(dudi = dudi.pca(chazeb$tab, scan = FALSE), fac = chazeb$cla,
#> scannf = FALSE)
#> class: discrimin
#>
#> $nf (axis saved) : 1
#>
#> eigen values: 0.8451
#>
#> data.frame nrow ncol content
#> 1 $fa 6 1 loadings / canonical weights
#> 2 $li 23 1 canonical scores
#> 3 $va 6 1 cos(variables, canonical scores)
#> 4 $cp 6 1 cos(components, canonical scores)
#> 5 $gc 2 1 class scores
#>
if(!adegraphicsLoaded())
plot(dis1)
#> Error in plot.discrimin(dis1): One axis only : not yet implemented
data(skulls)
plot(discrimin(dudi.pca(skulls, scan = FALSE), gl(5,30),
scan = FALSE))