Principal Coordinates Analysis
dudi.pco.Rd
dudi.pco
performs a principal coordinates analysis of a Euclidean distance matrix
and returns the results as objects of class pco
and dudi
.
Usage
dudi.pco(d, row.w = "uniform", scannf = TRUE, nf = 2,
full = FALSE, tol = 1e-07)
# S3 method for class 'pco'
scatter(x, xax = 1, yax = 2, clab.row = 1, posieig = "top",
sub = NULL, csub = 2, ...)
Arguments
- d
an object of class
dist
containing a Euclidean distance matrix.- row.w
an optional distance matrix row weights. If not NULL, must be a vector of positive numbers with length equal to the size of the distance matrix
- scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
- nf
if scannf FALSE, an integer indicating the number of kept axes
- full
a logical value indicating whether all the axes should be kept
- tol
a tolerance threshold to test whether the distance matrix is Euclidean : an eigenvalue is considered positive if it is larger than
-tol*lambda1
wherelambda1
is the largest eigenvalue.
- x
an object of class
pco
- xax
the column number for the x-axis
- yax
the column number for the y-axis
- clab.row
a character size for the row labels
- posieig
if "top" the eigenvalues bar plot is upside, if "bottom" it is downside, if "none" no plot
- sub
a string of characters to be inserted as legend
- csub
a character size for the legend, used with
par("cex")*csub
- ...
further arguments passed to or from other methods
Value
dudi.pco
returns a list of class pco
and dudi
. See dudi
References
Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–338.
Author
Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr
Examples
data(yanomama)
gen <- quasieuclid(as.dist(yanomama$gen))
geo <- quasieuclid(as.dist(yanomama$geo))
ant <- quasieuclid(as.dist(yanomama$ant))
geo1 <- dudi.pco(geo, scann = FALSE, nf = 3)
gen1 <- dudi.pco(gen, scann = FALSE, nf = 3)
ant1 <- dudi.pco(ant, scann = FALSE, nf = 3)
plot(coinertia(ant1, gen1, scann = FALSE))
#> Error in s.corcircle(dfxy = coinertia(ant1, gen1, scann = FALSE)$aX, xax = 1, yax = 2, plot = FALSE, storeData = TRUE, pos = -3, psub = list( text = "Unconstrained axes (X)"), pbackground = list( box = FALSE), plabels = list(cex = 1.25)): non convenient selection for dfxy (can not be converted to dataframe)