Duality Diagram
dudi.Rd
as.dudi
is called by many functions (dudi.pca
, dudi.coa
, dudi.acm
, ...)
and not directly by the user. It creates duality diagrams.
t.dudi
returns an object of class 'dudi
' where the rows are the columns and the columns are the rows
of the initial dudi
.
is.dudi
returns TRUE if the object is of class dudi
redo.dudi
computes again an analysis, eventually changing the number of kept axes. Used by other functions.
Arguments
- df
a data frame with n rows and p columns
- col.w
a numeric vector containing the row weights
- row.w
a numeric vector containing the column weights
- scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
- nf
if scannf FALSE, an integer indicating the number of kept axes
- call
generally
match.call()
- type
a string of characters : the returned list will be of class
c(type, "dudi")
- tol
a tolerance threshold for null eigenvalues (a value less than tol times the first one is considered as null)
- full
a logical value indicating whether all non null eigenvalues should be kept
- x, dudi, object
objects of class
dudi
- ...
further arguments passed to or from other methods
- newnf
an integer indicating the number of kept axes
- i,j
elements to extract (integer or empty): index of rows (i) and columns (j)
Value
as.dudi and all the functions that use it return a list with the following components :
- tab
a data frame with n rows and p columns
- cw
column weights, a vector with n components
- lw
row (lines) weights, a vector with p components
- eig
eigenvalues, a vector with min(n,p) components
- nf
integer, number of kept axes
- c1
principal axes, data frame with p rows and nf columns
- l1
principal components, data frame with n rows and nf columns
- co
column coordinates, data frame with p rows and nf columns
- li
row coordinates, data frame with n rows and nf columns
- call
original call
References
Escoufier, Y. (1987) The duality diagram : a means of better practical applications In Development in numerical ecology, Legendre, P. & Legendre, L. (Eds.) NATO advanced Institute, Serie G. Springer Verlag, Berlin, 139–156.
Author
Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr
Stéphane Dray stephane.dray@univ-lyon1.fr
Examples
data(deug)
dd1 <- dudi.pca(deug$tab, scannf = FALSE)
dd1
#> Duality diagramm
#> class: pca dudi
#> $call: dudi.pca(df = deug$tab, scannf = FALSE)
#>
#> $nf: 2 axis-components saved
#> $rank: 9
#> eigen values: 3.101 1.363 1.032 0.9341 0.7398 ...
#> vector length mode content
#> 1 $cw 9 numeric column weights
#> 2 $lw 104 numeric row weights
#> 3 $eig 9 numeric eigen values
#>
#> data.frame nrow ncol content
#> 1 $tab 104 9 modified array
#> 2 $li 104 2 row coordinates
#> 3 $l1 104 2 row normed scores
#> 4 $co 9 2 column coordinates
#> 5 $c1 9 2 column normed scores
#> other elements: cent norm
t(dd1)
#> Duality diagramm
#> class: transpo dudi
#> $call: t.dudi(x = dd1)
#>
#> $nf: 2 axis-components saved
#> $rank: 9
#> eigen values: 3.101 1.363 1.032 0.9341 0.7398 ...
#> vector length mode content
#> 1 $cw 104 numeric column weights
#> 2 $lw 9 numeric row weights
#> 3 $eig 9 numeric eigen values
#>
#> data.frame nrow ncol content
#> 1 $tab 9 104 modified array
#> 2 $li 9 2 row coordinates
#> 3 $l1 9 2 row normed scores
#> 4 $co 104 2 column coordinates
#> 5 $c1 104 2 column normed scores
#> other elements: NULL
is.dudi(dd1)
#> [1] TRUE
redo.dudi(dd1,3)
#> Duality diagramm
#> class: pca dudi
#> $call: dudi.pca(df = deug$tab, scannf = FALSE, nf = 3)
#>
#> $nf: 3 axis-components saved
#> $rank: 9
#> eigen values: 3.101 1.363 1.032 0.9341 0.7398 ...
#> vector length mode content
#> 1 $cw 9 numeric column weights
#> 2 $lw 104 numeric row weights
#> 3 $eig 9 numeric eigen values
#>
#> data.frame nrow ncol content
#> 1 $tab 104 9 modified array
#> 2 $li 104 3 row coordinates
#> 3 $l1 104 3 row normed scores
#> 4 $co 9 3 column coordinates
#> 5 $c1 9 3 column normed scores
#> other elements: cent norm
summary(dd1)
#> Class: pca dudi
#> Call: dudi.pca(df = deug$tab, scannf = FALSE)
#>
#> Total inertia: 9
#>
#> Eigenvalues:
#> Ax1 Ax2 Ax3 Ax4 Ax5
#> 3.1014 1.3630 1.0323 0.9341 0.7398
#>
#> Projected inertia (%):
#> Ax1 Ax2 Ax3 Ax4 Ax5
#> 34.460 15.144 11.470 10.378 8.219
#>
#> Cumulative projected inertia (%):
#> Ax1 Ax1:2 Ax1:3 Ax1:4 Ax1:5
#> 34.46 49.60 61.07 71.45 79.67
#>
#> (Only 5 dimensions (out of 9) are shown)
#>