Vegetation in Trois-Fontaines
vegtf.Rd
This data set contains abundance values (Braun-Blanquet scale) of 80 plant species for 337 sites. Data have been collected by Sonia Said and Francois Debias.
Usage
data(vegtf)
Format
vegtf
is a list with the following components:
- veg
a data.frame with the abundance values of 80 species (columns) in 337 sites (rows)
- xy
a data.frame with the spatial coordinates of the sites
- area
a data.frame (area) which define the boundaries of the study site
- sp.names
a vector containing the species latin names
- nb
a neighborhood object (class
nb
defined in packagespdep
)- Spatial
an object of the class
SpatialPolygons
ofsp
, containing the map
Source
Dray, S., Said, S. and Debias, F. (2008) Spatial ordination of vegetation data using a generalization of Wartenberg's multivariate spatial correlation. Journal of vegetation science, 19, 45–56.
Examples
if(requireNamespace("spdep", quietly = TRUE) & requireNamespace("adespatial", quietly = TRUE)) {
data(vegtf)
coa1 <- dudi.coa(vegtf$veg, scannf = FALSE)
ms.coa1 <- adespatial::multispati(coa1, listw = spdep::nb2listw(vegtf$nb), nfposi = 2,
nfnega = 0, scannf = FALSE)
summary(ms.coa1)
plot(ms.coa1)
if(adegraphicsLoaded()) {
g1 <- s.value(vegtf$xy, coa1$li[, 1], Sp = vegtf$Spatial, pSp.col = "white", plot = FALSE)
g2 <- s.value(vegtf$xy, ms.coa1$li[, 1], Sp = vegtf$Spatial, pSp.col = "white", plot = FALSE)
g3 <- s.label(coa1$c1, plot = FALSE)
g4 <- s.label(ms.coa1$c1, plot = FALSE)
G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
par(mfrow = c(2, 2))
s.value(vegtf$xy, coa1$li[, 1], area = vegtf$area, include.origin = FALSE)
s.value(vegtf$xy, ms.coa1$li[, 1], area = vegtf$area, include.origin = FALSE)
s.label(coa1$c1)
s.label(ms.coa1$c1)
}
}
#>
#> Multivariate Spatial Analysis
#> Call: adespatial::multispati(dudi = coa1, listw = spdep::nb2listw(vegtf$nb),
#> scannf = FALSE, nfposi = 2, nfnega = 0)
#>
#> Scores from the initial duality diagram:
#> var cum ratio moran
#> RS1 0.5237982 0.5237982 0.04018794 0.08653081
#> RS2 0.4852328 1.0090310 0.07741699 0.08012944
#>
#> Multispati eigenvalues decomposition:
#> eig var moran
#> CS1 0.1689640 0.4047914 0.417410
#> CS2 0.1306298 0.3131971 0.417085
#> Error in s.match(dfxy1 = ms.coa1$li, dfxy2 = ms.coa1$ls, xax = 1, yax = 2, plot = FALSE, storeData = TRUE, pos = -3, psub = list(text = "Scores and lag scores")): non convenient selection for dfxy1 or dfxy2 (can not be converted to dataframe)