Skip to contents

This function performs a projection of supplementary rows (i.e. supplementary individuals).

Usage

# S3 method for class 'coa'
suprow(x, Xsup, ...) 
# S3 method for class 'dudi'
suprow(x, Xsup, ...) 
# S3 method for class 'dudi'
predict(object, newdata, ...) 
# S3 method for class 'pca'
suprow(x, Xsup, ...)
# S3 method for class 'acm'
suprow(x, Xsup, ...) 
# S3 method for class 'mix'
suprow(x, Xsup, ...)
# S3 method for class 'fca'
suprow(x, Xsup, ...)

Arguments

x, object

an object of class dudi

Xsup, newdata

an array with the supplementary rows

...

further arguments passed to or from other methods

Details

If suprow.dudi is used, the column vectors of Xsup are projected without prior modifications onto the principal components of dudi with the scalar product associated to the row weightings of dudi.

Value

predict returns a data frame containing the coordinates of the supplementary rows. suprow returns a list with the transformed table Xsup in tabsup and the coordinates of the supplementary rows in lisup.

References

Gower, J. C. (1967) Multivariate analysis and multivariate geometry. The statistician, 17, 13–28.

Author

Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr

Examples

data(euro123)
par(mfrow = c(2, 2))
w <- euro123[[2]]
dudi1 <- dudi.pca(w, scal = FALSE, scan = FALSE)

if(adegraphicsLoaded()) {
  g11 <- s.arrow(dudi1$c1, psub.text = "Classical", psub.posi = "bottomright", plot = FALSE)
  g12 <- s.label(suprow(dudi1, w)$tabsup, plab.cex = 0.75, plot = FALSE)
  g1 <- superpose(g11, g12)
  
  g21 <- s.arrow(dudi1$c1, psub.text = "Without centring", psub.posi = "bottomright", plot = FALSE)
  g22 <- s.label(suprow(dudi1, w)$tabsup, plab.cex = 0.75, plot = FALSE)
  g2 <- superpose(g21, g22) 
  
  g3 <- triangle.label(w, plab.cex = 0.75, label = row.names(w), adjust = FALSE, plot = FALSE)
  g4 <- triangle.label(w, plab.cex = 0.75, label = row.names(w), adjust = TRUE, plot = FALSE)
  
  G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
  
} else {
  s.arrow(dudi1$c1, sub = "Classical", possub = "bottomright", csub = 2.5)
  s.label(suprow(dudi1, w), add.plot = TRUE, clab = 0.75)
  
  s.arrow(dudi1$c1, sub = "Without centring", possub = "bottomright", csub = 2.5)
  s.label(suprow(dudi1, w), clab = 0.75, add.plot = TRUE)
  
  triangle.plot(w, clab = 0.75, label = row.names(w), scal = FALSE)
  triangle.plot(w, clab = 0.75, label = row.names(w), scal = TRUE)
}


data(rpjdl)
rpjdl.coa <- dudi.coa(rpjdl$fau, scann = FALSE, nf = 4)
rpjdl.coa$li[1:3, ]
#>      Axis1       Axis2      Axis3      Axis4
#> 1 1.449656 -1.59644004 -1.2912481 -2.0346309
#> 2 1.308057 -1.56619615 -1.2428411 -1.6905682
#> 3 1.042200  0.00201931 -0.2788701 -0.1574388
suprow(rpjdl.coa,rpjdl$fau[1:3, ])$lisup  #the same
#>      Axis1       Axis2      Axis3      Axis4
#> 1 1.449656 -1.59644004 -1.2912481 -2.0346309
#> 2 1.308057 -1.56619615 -1.2428411 -1.6905682
#> 3 1.042200  0.00201931 -0.2788701 -0.1574388

data(deug)
deug.dudi <- dudi.pca(df = deug$tab, center = deug$cent, scale = FALSE, scannf = FALSE)
suprow(deug.dudi, deug$tab[1:3, ])$lisup  #the supplementary individuals are centered
#>      Axis1      Axis2
#> 1 14.86352 -12.399345
#> 2 16.49579   8.738351
#> 3 21.97732   9.038219
deug.dudi$li[1:3, ]  # the same
#>      Axis1      Axis2
#> 1 14.86352 -12.399345
#> 2 16.49579   8.738351
#> 3 21.97732   9.038219