Transformation of a Distance Matrix for becoming Euclidean
lingoes.Rd
transforms a distance matrix in a Euclidean one.
References
Lingoes, J.C. (1971) Some boundary conditions for a monotone analysis of symmetric matrices. Psychometrika, 36, 195–203.
Details
The function uses the smaller positive constant k which transforms the matrix of \(\sqrt{d_{ij}^2 + 2 \ast k}\) in an Euclidean one
Author
Daniel Chessel
Stéphane Dray stephane.dray@univ-lyon1.fr
Examples
data(capitales)
d0 <- capitales$dist
is.euclid(d0) # FALSE
#> [1] FALSE
d1 <- lingoes(d0, TRUE)
#> Lingoes constant = 2120982
# Lingoes constant = 2120982
is.euclid(d1) # TRUE
#> [1] TRUE
plot(d0, d1)
x0 <- sort(unclass(d0))
lines(x0, sqrt(x0^2 + 2 * 2120982), lwd = 3)
is.euclid(sqrt(d0^2 + 2 * 2120981), tol = 1e-10) # FALSE
#> [1] FALSE
is.euclid(sqrt(d0^2 + 2 * 2120982), tol = 1e-10) # FALSE
#> [1] FALSE
is.euclid(sqrt(d0^2 + 2 * 2120983), tol = 1e-10)
#> [1] TRUE
# TRUE the smaller constant