Is a Distance Matrix Euclidean?
is.euclid.Rd
Confirmation of the Euclidean nature of a distance matrix by the Gower's theorem.is.euclid
is used in summary.dist
.
Usage
is.euclid(distmat, plot = FALSE, print = FALSE, tol = 1e-07)
# S3 method for class 'dist'
summary(object, ...)
Arguments
- distmat
an object of class 'dist'
- plot
a logical value indicating whether the eigenvalues bar plot of the matrix of the term \(-\frac{1}{2} {d_{ij}^2}\) centred by rows and columns should be diplayed
a logical value indicating whether the eigenvalues of the matrix of the term \(-\frac{1}{2} {d_{ij}^2}\) centred by rows and columns should be printed
- tol
a tolerance threshold : an eigenvalue is considered positive if it is larger than
-tol*lambda1
wherelambda1
is the largest eigenvalue.- object
an object of class 'dist'
- ...
further arguments passed to or from other methods
References
Gower, J.C. and Legendre, P. (1986) Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 3, 5–48.
Author
Daniel Chessel
Stéphane Dray stephane.dray@univ-lyon1.fr
Examples
w <- matrix(runif(10000), 100, 100)
w <- dist(w)
summary(w)
#> Class: dist
#> Distance matrix by lower triangle : d21, d22, ..., d2n, d32, ...
#> Size: 100
#> Labels:
#> call: dist(x = w)
#> method: euclidean
#> Euclidean matrix (Gower 1966): TRUE
is.euclid (w) # TRUE
#> [1] TRUE
w <- quasieuclid(w) # no correction need in: quasieuclid(w)
#> Warning: Euclidean distance found : no correction need
w <- lingoes(w) # no correction need in: lingoes(w)
#> Warning: Euclidean distance found : no correction need
w <- cailliez(w) # no correction need in: cailliez(w)
#> Warning: Euclidean distance found : no correction need
rm(w)