Decomposition of inertia (i.e. contributions) in multivariate methods
inertia.dudi.Rd
Computes the decomposition of inertia to measure the contributions of row and/or columns in multivariate methods
Arguments
- x, object
a duality diagram, object of class
dudi
forinertia.dudi
. An object of classinertia
for the methodsprint
andsummary
- row.inertia
if TRUE, returns the decomposition of inertia for the rows
- col.inertia
if TRUE, returns the decomposition of inertia for the columns
- sort.axis
the kept axis used to sort the contributions in decreasing order
- subset
the number of rows and/or columns to display in the summary
- ...
further arguments passed to or from other methods
Value
An object of class inertia
, i.e. a list containing :
- tot.inertia
repartition of the total inertia between axes
- row.contrib
contributions of the rows to the total inertia
- row.abs
absolute contributions of the rows (i.e. decomposition per axis)
- row.rel
relative contributions of the rows
- row.cum
cumulative relative contributions of the rows (i.e. decomposition per row)
- col.contrib
contributions of the columns to the total inertia
- col.abs
absolute contributions of the columns (i.e. decomposition per axis)
- col.rel
relative contributions of the columns
- col.cum
cumulative relative contributions of the columns (i.e. decomposition per column)
- nf
the number of kept axes
References
Lebart, L., Morineau, A. and Tabart, N. (1977) Techniques de la description statistique, méthodes et logiciels pour la description des grands tableaux, Dunod, Paris, 61–62.
Volle, M. (1981) Analyse des données, Economica, Paris, 89–90 and 118
Lebart, L., Morineau, L. and Warwick, K.M. (1984) Multivariate descriptive analysis: correspondence and related techniques for large matrices, John Wiley and Sons, New York.
Greenacre, M. (1984) Theory and applications of correspondence analysis, Academic Press, London, 66.
Rouanet, H. and Le Roux, B. (1993) Analyse des données multidimensionnelles, Dunod, Paris, 143–144.
Tenenhaus, M. (1994) Méthodes statistiques en gestion, Dunod, Paris, p. 160, 161, 166, 204.
Lebart, L., Morineau, A. and Piron, M. (1995) Statistique exploratoire multidimensionnelle, Dunod, Paris, p. 56,95-96.
Author
Daniel Chessel
Stéphane Dray stephane.dray@univ-lyon1.fr
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr
Examples
data(housetasks)
coa1 <- dudi.coa(housetasks, scann = FALSE)
res <- inertia(coa1, col = TRUE, row = FALSE)
res
#> Inertia information:
#> Call: inertia.dudi(x = coa1, row.inertia = FALSE, col.inertia = TRUE)
#>
#> Decomposition of total inertia:
#> inertia cum cum(%)
#> Ax1 0.5429 0.5429 48.69
#> Ax2 0.4450 0.9879 88.60
#> Ax3 0.1270 1.1149 100.00
#>
#> Column contributions (%):
#> Wife Alternating Husband Jointly
#> 27.00 10.57 34.21 28.23
#>
#> Column absolute contributions (%):
#> Axis1 Axis2
#> Wife 44.4620 10.312
#> Alternating 0.1037 2.783
#> Husband 54.2339 17.787
#> Jointly 1.2004 69.118
#>
#> Signed column relative contributions:
#> Axis1 Axis2
#> Wife 80.188 -15.24
#> Alternating 0.478 -10.51
#> Husband -77.203 -20.75
#> Jointly -2.071 97.73
#>
#> Cumulative sum of column relative contributions (%):
#> Axis1 Axis1:2 Axis3:3
#> Wife 80.188 95.43 4.568
#> Alternating 0.478 10.99 89.012
#> Husband 77.203 97.96 2.043
#> Jointly 2.071 99.80 0.200
summary(res)
#>
#> Total inertia: 1.115
#>
#> Projected inertia (%):
#> Ax1 Ax2
#> 48.69 39.91
#>
#> (Only 2 dimensions (out of 3) are shown)
#>
#>
#> Column absolute contributions (%):
#> Axis1 Axis2
#> Husband 54.2339 17.787
#> Wife 44.4620 10.312
#> Jointly 1.2004 69.118
#> Alternating 0.1037 2.783
#>
#> Column relative contributions (%):
#> Axis1 Axis2
#> Wife 80.188 15.24
#> Husband 77.203 20.75
#> Jointly 2.071 97.73
#> Alternating 0.478 10.51