Tests of randomization between distances applied to 'kdist' objetcs
corkdist.Rd
The mantelkdist and RVkdist functions apply to blocks of distance matrices the mantel.rtest and RV.rtest functions.
Usage
mantelkdist (kd, nrepet = 999, ...)
RVkdist (kd, nrepet = 999, ...)
# S3 method for class 'corkdist'
plot(x, whichinrow = NULL, whichincol = NULL,
gap = 4, nclass = 10,...)
Arguments
- kd
a list of class
kdist
- nrepet
the number of permutations
- x
an objet of class
corkdist
, coming from RVkdist or mantelkdist- whichinrow
a vector of integers to select the graphs in rows (if NULL all the graphs are computed)
- whichincol
a vector of integers to select the graphs in columns (if NULL all the graphs are computed)
- gap
an integer to determinate the space between two graphs
- nclass
a number of intervals for the histogram
- ...
further arguments passed to or from other methods
Value
a list of class corkdist
containing for each pair of distances an object of class randtest
(permutation tests).
Details
The corkdist
class has some generic functions print
, plot
and summary
. The plot shows bivariate scatterplots between semi-matrices of distances or histograms of simulated values with an error position.
Author
Daniel Chessel
Stéphane Dray stephane.dray@univ-lyon1.fr
Examples
data(friday87)
fri.w <- ktab.data.frame(friday87$fau, friday87$fau.blo, tabnames = friday87$tab.names)
fri.kc <- lapply(1:10, function(x) dist.binary(fri.w[[x]], 10))
names(fri.kc) <- substr(friday87$tab.names, 1, 4)
fri.kd <- kdist(fri.kc)
#> Warning: Zero distance(s)
fri.mantel <- mantelkdist(kd = fri.kd, nrepet = 999)
plot(fri.mantel, 1:5, 1:5)
plot(fri.mantel, 1:5, 6:10)
plot(fri.mantel, 6:10, 1:5)
plot(fri.mantel, 6:10, 6:10)
s.corcircle(dudi.pca(as.data.frame(fri.kd), scan = FALSE)$co)
plot(RVkdist(fri.kd), 1:5, 1:5)
#> Warning: Zero distance(s)
#> Warning: Zero distance(s)
#> Warning: Zero distance(s)
#> Warning: Zero distance(s)
#> Warning: Zero distance(s)
#> Warning: Zero distance(s)
#> Warning: Zero distance(s)
#> Warning: Zero distance(s)
#> Warning: Zero distance(s)
data(yanomama)
m1 <- mantelkdist(kdist(yanomama), 999)
m1
#> Mantel's tests for 'kdist' object
#> class: corkdist list
#> Call: mantelkdist(kd = kdist(yanomama), nrepet = 999)
#>
#> gen-geo
#> Monte-Carlo test
#> Call: mantelkdist(kd = kdist(yanomama), nrepet = 999)
#>
#> Observation: 0.5098684
#>
#> Based on 999 replicates
#> Simulated p-value: 0.001
#> Alternative hypothesis: greater
#>
#> Std.Obs Expectation Variance
#> 3.196556810 0.001240244 0.025318383
#>
#> ant-geo
#> Monte-Carlo test
#> Call: mantelkdist(kd = kdist(yanomama), nrepet = 999)
#>
#> Observation: 0.8428053
#>
#> Based on 999 replicates
#> Simulated p-value: 0.001
#> Alternative hypothesis: greater
#>
#> Std.Obs Expectation Variance
#> 5.432687465 -0.005692316 0.024393370
#>
#> ant-gen
#> Monte-Carlo test
#> Call: mantelkdist(kd = kdist(yanomama), nrepet = 999)
#>
#> Observation: 0.2995506
#>
#> Based on 999 replicates
#> Simulated p-value: 0.051
#> Alternative hypothesis: greater
#>
#> Std.Obs Expectation Variance
#> 1.689089145 0.009678608 0.029451488
#> list of 3 'randtest' objects
summary(m1)
#> Mantel's tests for 'kdist' object
#> Call: mantelkdist(kd = kdist(yanomama), nrepet = 999)
#> Simulated p-values:
#> 1 2 3
#> geo - - -
#> gen 0.001 - -
#> ant 0.001 0.051 -
plot(m1)