Skip to contents

performs a STATIS analysis of a ktab object.

Usage

statis(X, scannf = TRUE, nf = 3, tol = 1e-07)
# S3 method for class 'statis'
plot(x, xax = 1, yax = 2, option = 1:4, ...) 
# S3 method for class 'statis'
print(x, ...)

Arguments

X

an object of class 'ktab'

scannf

a logical value indicating whether the number of kept axes for the compromise should be asked

nf

if scannf FALSE, an integer indicating the number of kept axes for the compromise

tol

a tolerance threshold to test whether the distance matrix is Euclidean : an eigenvalue is considered positive if it is larger than -tol*lambda1 where lambda1 is the largest eigenvalue

x

an object of class 'statis'

xax, yax

the numbers of the x-axis and the y-axis

option

an integer between 1 and 4, otherwise the 4 components of the plot are dispayed

...

further arguments passed to or from other methods

Value

statis returns a list of class 'statis' containing :

RV

a matrix with the all RV coefficients

RV.eig

a numeric vector with all the eigenvalues

RV.coo

a data frame with the array scores

tab.names

a vector of characters with the names of the arrays

RV.tabw

a numeric vector with the array weigths

C.nf

an integer indicating the number of kept axes

C.rank

an integer indicating the rank of the analysis

C.li

a data frame with the row coordinates

C.Co

a data frame with the column coordinates

C.T4

a data frame with the principal vectors (for each table)

TL

a data frame with the factors (not used)

TC

a data frame with the factors for Co

T4

a data frame with the factors for T4

References

Lavit, C. (1988) Analyse conjointe de tableaux quantitatifs, Masson, Paris.

Lavit, C., Escoufier, Y., Sabatier, R. and Traissac, P. (1994) The ACT (Statis method). Computational Statistics and Data Analysis, 18, 97–119.

Author

Daniel Chessel

Examples

data(jv73)
kta1 <- ktab.within(withinpca(jv73$morpho, jv73$fac.riv, scann = FALSE))
#> Warning: Variables with null variance not standardized.
#> Warning: Variables with null variance not standardized.
#> Warning: Variables with null variance not standardized.
statis1 <- statis(kta1, scann = FALSE)
plot(statis1)
#> Error in s.corcircle(dfxy = statis1$RV.coo, xax = 1, yax = 2, plot = FALSE,     storeData = TRUE, pos = -3, psub = list(text = "Interstructure",         position = "topleft"), pbackground = list(box = FALSE),     plabels = list(cex = 1.25)): non convenient selection for dfxy (can not be converted to dataframe)

dudi1 <- dudi.pca(jv73$poi, scann = FALSE, scal = FALSE)
wit1 <- wca(dudi1, jv73$fac.riv, scann = FALSE)
kta3 <- ktab.within(wit1)
data(jv73)
statis3 <- statis(kta3, scann = FALSE)
plot(statis3)
#> Error in s.corcircle(dfxy = statis3$RV.coo, xax = 1, yax = 2, plot = FALSE,     storeData = TRUE, pos = -3, psub = list(text = "Interstructure",         position = "topleft"), pbackground = list(box = FALSE),     plabels = list(cex = 1.25)): non convenient selection for dfxy (can not be converted to dataframe)

if(adegraphicsLoaded()) {
  s.arrow(statis3$C.li, pgrid.text.cex = 0)
  kplot(statis3, traj = TRUE, arrow = FALSE, plab.cex = 0, psub.cex = 3, ppoi.cex = 3)
} else {
  s.arrow(statis3$C.li, cgrid = 0)
  kplot(statis3, traj = TRUE, arrow = FALSE, unique = TRUE, 
    clab = 0, csub = 3, cpoi = 3)
}

#> Error in s.label(dfxy = statis3$C.Co, xax = 1, yax = 2, facets = statis3$TC[,     1], plot = FALSE, storeData = TRUE, pos = -3, plabels = list(    cex = 1.25), unique = TRUE, clab = 0, csub = 3, cpoi = 3): non convenient selection for dfxy (can not be converted to dataframe)

statis3
#> STATIS Analysis
#> class:statis 
#> table number: 12 
#> row number: 19   total column number: 92 
#> 
#>      **** Interstructure ****
#> 
#> eigen values: 5.337 1.525 1.294 1.037 0.6419 ...
#>  $RV       matrix       12      12     RV coefficients
#>  $RV.eig   vector       12       eigenvalues
#>  $RV.coo   data.frame   12      4    array scores
#>  $tab.names    vector       12        array names
#>  $RV.tabw  vector       12      array weigths
#> 
#> RV coefficient
#>             Allaine    Audeux    Clauge  Cuisance  Cusancin  Dessoubre
#> Allaine   1.0000000                                                   
#> Audeux    0.3923156 1.0000000                                         
#> Clauge    0.4142577 0.2568859 1.0000000                               
#> Cuisance  0.4881191 0.3045202 0.4934249 1.0000000                     
#> Cusancin  0.6750590 0.4465916 0.2351574 0.5962413 1.0000000           
#> Dessoubre 0.4264883 0.7460391 0.2912210 0.4596960 0.4098816 1.00000000
#> Doubs     0.4162722 0.5275275 0.4599651 0.4196404 0.2648507 0.55605542
#> Doulonnes 0.2401718 0.3781006 0.3310817 0.5445763 0.2987118 0.40145726
#> Drugeon   0.3301627 0.0999847 0.5153033 0.2209572 0.1435757 0.09888345
#> Furieuse  0.3844109 0.3291450 0.3259230 0.7768327 0.6693345 0.40898890
#> Lison     0.2312130 0.3968212 0.2895775 0.6310371 0.3982919 0.48144475
#> Loue      0.3872305 0.1128074 0.5192117 0.6487130 0.3069628 0.20311166
#>               Doubs Doulonnes    Drugeon  Furieuse     Lison Loue
#> Allaine                                                          
#> Audeux                                                           
#> Clauge                                                           
#> Cuisance                                                         
#> Cusancin                                                         
#> Dessoubre                                                        
#> Doubs     1.0000000                                              
#> Doulonnes 0.2183520 1.0000000                                    
#> Drugeon   0.4214976 0.0671516 1.00000000                         
#> Furieuse  0.2782714 0.4748992 0.18165914 1.0000000               
#> Lison     0.4181009 0.5346002 0.07442131 0.5209446 1.0000000     
#> Loue      0.4396741 0.3005171 0.31081167 0.3862660 0.3597613    1
#> 
#>       **** Compromise ****
#> 
#> eigen values: 2.012 0.903 0.5025 0.3003 0.2282 ...
#> 
#>  $nf: 3 axis-components saved
#>  $rank: 19 
#>  data.frame nrow ncol content                       
#>  $C.li      19   3    row coordinates               
#>  $C.Co      92   3    column coordinates            
#>  $C.T4      48   3    principal vectors (each table)
#>  $TL        228  2    factors (not used)            
#>  $TC        92   2    factors for Co                
#>  $T4        48   2    factors for T4                
#>