Separated Analyses in a K-tables
sepan.Rd
performs K separated multivariate analyses of an object of class ktab
containing K tables.
Arguments
- X
an object of class
ktab
- nf
an integer indicating the number of kept axes for each separated analysis
- x, object
an object of class 'sepan'
- mfrow
a vector of the form "c(nr,nc)", otherwise computed by a special own function
n2mfrow
- csub
a character size for the sub-titles, used with
par("cex")*csub
- ...
further arguments passed to or from other methods
Value
returns a list of class 'sepan' containing :
- call
a call order
- tab.names
a vector of characters with the names of tables
- blo
a numeric vector with the numbers of columns for each table
- rank
a numeric vector with the rank of the studied matrix for each table
- Eig
a numeric vector with all the eigenvalues
- Li
a data frame with the row coordinates
- L1
a data frame with the row normed scores
- Co
a data frame with the column coordinates
- C1
a data frame with the column normed coordinates
- TL
a data frame with the factors for Li L1
- TC
a data frame with the factors for Co C1
Details
The function plot on a sepan
object allows to compare inertias and structures between arrays.
In black, the eigenvalues of kept axes in the object 'sepan'.
Examples
data(escopage)
w <- data.frame(scale(escopage$tab))
w <- ktab.data.frame(w, escopage$blo, tabnames = escopage$tab.names)
sep1 <- sepan(w)
sep1
#> class: sepan list
#> $call: sepan(X = w)
#> vector length mode content
#> 1 $tab.names 4 character tab names
#> 2 $blo 4 numeric column number
#> 3 $rank 4 numeric tab rank
#> 4 $Eig 27 numeric All the eigen values
#> data.frame nrow ncol content
#> 1 $Li 84 2 row coordinates
#> 2 $L1 84 2 row normed scores
#> 3 $Co 27 2 column coordinates
#> 4 $C1 27 2 column normed coordinates
#> 5 $TL 84 2 factors for Li L1
#> 6 $TC 27 2 factors for Co C1
summary(sep1)
#> Separate Analyses of a 'ktab' object
#> names nrow ncol rank lambda1 lambda2 lambda3 lambda4
#> 1 repos 21 5 5 2.135 1.444 0.777 0.268 ...
#> 2 visual 21 3 3 2.7 0.144 0.014
#> 3 olfactif 21 10 10 4.478 2.365 0.996 0.729 ...
#> 4 general 21 9 9 5.373 1.706 0.642 0.334 ...
plot(sep1)
#> Error in plot.sepan(sep1): object 'sep1' not found