Graphs to Analyse a factor in PCA
score.pca.Rd
performs the canonical graph of a Principal Component Analysis.
Arguments
- x
an object of class
pca
- xax
the column number for the used axis
- which.var
the numbers of the kept columns for the analysis, otherwise all columns
- mfrow
a vector of the form "c(nr,nc)", otherwise computed by a special own function
n2mfrow
- csub
a character size for sub-titles, used with
par("cex")*csub
- sub
a vector of string of characters to be inserted as sub-titles, otherwise the names of the variables
- abline
a logical value indicating whether a regression line should be added
- ...
further arguments passed to or from other methods
Examples
data(deug)
dd1 <- dudi.pca(deug$tab, scan = FALSE)
score(dd1)
#> Error in s.label(dfxy = cbind(dd1$l1[, 1], deug$tab[1:104, 1L]), plot = FALSE, storeData = TRUE, pos = -3, paxes = list(aspectratio = "fill", draw = TRUE), porigin = list(include = FALSE), pgrid = list( draw = FALSE), plabels = list(cex = 0), psub.text = "Algebra (r=-0.79)"): non convenient selection for dfxy (can not be converted to dataframe)
# The correlations are :
dd1$co[,1]
#> [1] -0.7924753 -0.6531896 -0.7410261 -0.5287294 -0.5538660 -0.7416171 -0.3336153
#> [8] -0.2755026 -0.4171874
# [1] 0.7925 0.6532 0.7410 0.5287 0.5539 0.7416 0.3336 0.2755 0.4172