Bootstrap simulations
randboot.RdFunctions and classes to manage outputs of bootstrap
  simulations for one (class randboot) or several (class krandboot) statistics
Usage
as.krandboot(obs, boot, quantiles = c(0.025, 0.975), names =
colnames(boot), call = match.call())
# S3 method for class 'krandboot'
print(x, ...)
as.randboot(obs, boot, quantiles = c(0.025, 0.975), call = match.call())
# S3 method for class 'randboot'
print(x, ...)
randboot(object, ...)Arguments
- obs
- a value (class - randboot) or a vector (class- krandboot) with observed statistics
- boot
- a vector (class - randboot) or a matrix (class- krandboot) with the bootstrap values of the statistics
- quantiles
- a vector indicating the lower and upper quantiles to compute 
- names
- a vector of names for the statistics 
- call
- the matching call 
- x
- an object of class - randbootor- krandboot
- object
- an object on which bootstrap should be perform 
- ...
- other arguments to be passed to methods 
References
Carpenter, J. and Bithell, J. (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians.Statistics in medicine, 19, 1141-1164
Author
Stéphane Dray (stephane.dray@univ-lyon1.fr)
Examples
## an example corresponding to 10 statistics and 100 repetitions
bt <- as.krandboot(obs = rnorm(10), boot = matrix(rnorm(1000), nrow = 100))
bt
#> Multiple bootstrap
#> Call: as.krandboot(obs = rnorm(10), boot = matrix(rnorm(1000), nrow = 100))
#> 
#> Number of statistics:   10 
#> 
#> Confidence Interval:
#>    N.rep         Obs        2.5%     97.5%
#> 1    100 -0.76278812 -3.51748249 0.7966103
#> 2    100  0.85397764  0.28478387 3.3023528
#> 3    100  0.51680901 -0.99036841 2.7685163
#> 4    100  1.09401737  0.57896491 4.2609446
#> 5    100  0.73304685 -0.40343203 3.5030764
#> 6    100 -0.01193333 -1.83911214 2.2211043
#> 7    100  0.06527588 -1.92976878 1.9234330
#> 8    100 -0.82803558 -3.58631744 0.1801371
#> 9    100  0.87056501 -0.01212261 3.5892404
#> 10   100 -0.23716897 -2.50485763 1.3559333
if(adegraphicsLoaded())
plot(bt)