Multiple Factorial Analysis
mfa.Rd
performs a multiple factorial analysis,
using an object of class ktab
.
Arguments
- X
K-tables, an object of class
ktab
- option
a string of characters for the weighting of arrays options :
lambda1
weighting of group k by the inverse of the first eigenvalue of the k analysis
inertia
weighting of group k by the inverse of the total inertia of the array k
uniform
uniform weighting of groups
internal
weighting included in
X$tabw
- scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
- nf
if scannf FALSE, an integer indicating the number of kept axes
- x, object
an object of class 'mfa'
- xax, yax
the numbers of the x-axis and the y-axis
- option.plot
an integer between 1 and 4, otherwise the 4 components of the plot are displayed
- ...
further arguments passed to or from other methods
Value
Returns a list including :
- tab
a data frame with the modified array
- rank
a vector of ranks for the analyses
- eig
a numeric vector with the all eigenvalues
- li
a data frame with the coordinates of rows
- TL
a data frame with the factors associated to the rows (indicators of table)
- co
a data frame with the coordinates of columns
- TC
a data frame with the factors associated to the columns (indicators of table)
- blo
a vector indicating the number of variables for each table
- lisup
a data frame with the projections of normalized scores of rows for each table
- link
a data frame containing the projected inertia and the links between the arrays and the reference array
References
Escofier, B. and Pagès, J. (1994) Multiple factor analysis (AFMULT package), Computational Statistics and Data Analysis, 18, 121–140.
Author
Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr
Examples
data(friday87)
w1 <- data.frame(scale(friday87$fau, scal = FALSE))
w2 <- ktab.data.frame(w1, friday87$fau.blo,
tabnames = friday87$tab.names)
mfa1 <- mfa(w2, scann = FALSE)
mfa1
#> Multiple Factorial Analysis
#> list of class mfa list of class list
#> $call: mfa(X = w2, scannf = FALSE)
#> $nf: 3 axis-components saved
#>
#> vector length mode content
#> 1 $tab.names 10 character tab names
#> 2 $blo 10 numeric column number
#> 3 $rank 1 numeric tab rank
#> 4 $eig 15 numeric eigen values
#> 5 $lw 16 numeric row weights
#> 6 $tabw 0 NULL array weights
#>
#> data.frame nrow ncol content
#> 1 $tab 16 91 modified array
#> 2 $li 16 3 row coordinates
#> 3 $l1 16 3 row normed scores
#> 4 $co 91 3 column coordinates
#> 5 $c1 91 3 column normed scores
#> 6 $lisup 160 3 row coordinates from each table
#> 7 $TL 160 2 factors for li l1
#> 8 $TC 91 2 factors for co c1
#> 9 $T4 40 2 factors for T4comp
#> 10 $T4comp 40 3 component projection
#> 11 $link 10 3 link array-total
#> other elements: NULL
plot(mfa1)
#> Error in eval(thecall$fac, envir = sys.frame(sys.nframe() + pos)): object 'mfa1' not found
data(escopage)
w <- data.frame(scale(escopage$tab))
w <- ktab.data.frame(w, escopage$blo, tabnames = escopage$tab.names)
plot(mfa(w, scann = FALSE))
#> Error in eval(thecall$fac, envir = sys.frame(sys.nframe() + pos)): object 'w' not found