Skip to contents

The hierarchical apportionment of quadratic entropy defined by Rao (1982).

Usage

apqe(samples, dis = NULL, structures)
# S3 method for class 'apqe'
print(x, full = FALSE, ...)

Arguments

samples

a data frame with haplotypes (or genotypes) as rows, populations as columns and abundance or presence-absence as entries

dis

an object of class dist computed from Euclidean distance. If dis is null, equidistances are used.

structures

a data frame that contains, in the jth row and the kth column, the name of the group of level k to which the jth population belongs

x

an object of class apqe

full

a logical value that indicates whether the original data ('distances', 'samples', 'structures') should be printed

...

... further arguments passed to or from other methods

Value

Returns a list of class apqe

call

call

results

a data frame that contains the components of diversity.

References

Rao, C.R. (1982) Diversity: its measurement, decomposition, apportionment and analysis. Sankhya: The Indian Journal of Statistics, A44, 1–22.

Pavoine S. and Dolédec S. (2005) The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environmental and Ecological Statistics, 12, 125–138.

Author

Sandrine Pavoine pavoine@mnhn.fr

Examples

data(ecomor)
ecomor.phylog <- taxo2phylog(ecomor$taxo)
apqe(ecomor$habitat, ecomor.phylog$Wdist)
#> $call
#> apqe(samples = ecomor$habitat, dis = ecomor.phylog$Wdist)
#> 
#> $results
#>                  diversity
#> Between samples 0.04253396
#> Within samples  0.94719472
#> Total           0.98972868
#>