This function computes the upper and lower bounds of Moran's I for a given spatial weighting matrix (stored in a listw
object).
These values are obtained by the eigendecomposition of the spatial weighting matrix.
moran.bounds(listw)
A vector containing the maximum and minimum of Moran's I for a given spatial weighting matrix value returned
de Jong, P., Sprenger, C., & van Veen, F. (1984). On extreme values of Moran's I and Geary's C. Geographical Analysis, 16(1), 17-24.
if(require("ade4", quietly = TRUE)){
if(require("spdep", quietly = TRUE)){
data(oribatid)
nbtri <- tri2nb(as.matrix(oribatid$xy))
lwB <- nb2listw(nbtri, style = "B")
lwW <- nb2listw(nbtri, style = "W")
scB <- mem(lwB)
scW <- mem(lwW)
moran.bounds(lwB)
moran.mc(scB[,1], lwB, 9)
moran.mc(scB[,69], lwB, 9)
moran.bounds(lwW)
moran.mc(scW[,1], lwW, 9)
moran.mc(scW[,69], lwW, 9)
}
}
#>
#> Monte-Carlo simulation of Moran I
#>
#> data: scW[, 69]
#> weights: lwW
#> number of simulations + 1: 10
#>
#> statistic = -0.5473, observed rank = 1, p-value = 0.9
#> alternative hypothesis: greater
#>